If it's not what You are looking for type in the equation solver your own equation and let us solve it.
16t^2-40t=70
We move all terms to the left:
16t^2-40t-(70)=0
a = 16; b = -40; c = -70;
Δ = b2-4ac
Δ = -402-4·16·(-70)
Δ = 6080
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{6080}=\sqrt{64*95}=\sqrt{64}*\sqrt{95}=8\sqrt{95}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-40)-8\sqrt{95}}{2*16}=\frac{40-8\sqrt{95}}{32} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-40)+8\sqrt{95}}{2*16}=\frac{40+8\sqrt{95}}{32} $
| 65+34+a=180 | | z/7+4=8 | | 5(x+5)-5=69-2x | | 12x+1-8.5=3.5+1 | | -7y+21=0 | | x/9-8=4 | | S(t)=-16t^2+40t+70 | | 4^(x-1)=16384 | | -4(-7-b)=1/3(b+62) | | 2(5-3v)=9v=28 | | 4*3^2x-2^2x-1=3^2x+1+2^2x | | s4+42=154 | | 3/4n-1/12=7/3 | | x+.2x=17.5 | | 8x-8=(2x-2 | | 25^2=15(15+x) | | 6y-13=37 | | 15956=9403+x | | 2(x^2-18)=38 | | 14-n=6n | | -1.3x=-520 | | -7=y-21/5 | | 37=26-3c | | 180n-360=120n | | 1/6n+1/5=7/11 | | 2x^2+11x+-21=0 | | 1/3n-11/25=7/10 | | -4(3+y)+6y-12=-36 | | 3x-3=2x-11= | | 114+4x=x | | 4=1+2/3y | | 7h=-23=33 |